P6F82 Quick Reference

Quick DIP Switch Setup:

R

Pentium II DIP Switch Settings

Core to Bus	DIP Switch Setting			
Clock Multiplier	Diagram	P1	P2	P3
66.6MHz x 3 200MHz	ON DIP 1 2 3	ON	OFF	ON
66.6MHz x 3.5 233MHz	ON DIP 1 2 3	OFF	OFF	ON
66.6MHz x 4 266MHz	$ \begin{array}{c c} ON & DIP \\ \hline 1 & 2 & 3 \end{array} $	ON	ON	OFF
66.6MHz x 4.5 300MHz	ON DIP 1 2 3	OFF	ON	OFF
* 66.6MHz x 5 333MHz	ON DIP 1 2 3	ON	OFF	OFF

Note: CPU with * Mark is not available yet, DIP switch setting table is for reference only.

Quick BIOS Setup:

After hardware Setup is completed, turn the power switch on, then press <**DEL>** key to access the AWARD BIOS SETUP program. A "**CMOS SETUP UTILITY**" will display on the screen.

- 1. Select "STANDARD CMOS SETUP" to set Date /Time and Floppy drive type, and also set Hard Disk Type to "Auto"
- 2. Select "LOAD SETUP DEFAULTS" and type "Y" to load BIOS optimal setup.
- Select "SAVE & EXIT SETUP" and press the <Enter> key to save the setting information in the CMOS memory and continue with the booting process.

Copyright Notice

©Copyright 1997.

The information contained in the user's manual and all accompanying documentation is copyrighted and all rights are reserved. This publication may not, in whole or in part, be reproduced, transcribed, stored in a retrieval system, translated into any language or computer language, or transmitted in any form whatsoever without the prior written consent from the manufacturer, except for copies retained by the purchasers for their personal archival purposes.

The manufacturer reserves the right to revise this user's manual and all accompanying documentation and to make changes in the content without obligation to notify any person or organization of the revision or change.

IN NO EVENT WILL THE VENDOR BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSE-QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS PRODUCT OR DOCUMENTA-TION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, THE VENDOR SHALL NOT HAVE LIABILITY FOR ANY HARDWARE, SOFTWARE, OR DATA STORED OR USED WITH THE PRODUCT, INCLUD-ING THE COSTS OF REPAIRING, REPLACING, OR RECOV-ERING SUCH HARDWARE, SOFTWARE, OR DATA.

All trademarks mentioned in this document are acknowledged.

The Specification is subject to change without notice.

Table Of Contents

Chapter 1	
Introduction	
1.1 Overview	5
1.2 P6F82 Specifications/Features	7
1.3 P6F82 Mainboard Layout	10
1.4 Microprocessor	11
1.5 Pentium II Packaging	11
1.6 Level 2 Cache	11
1.7 Chipset	12
1.8 Main Memory	12
1.9 Accelerated Graphics Port (AGP) slot	13
1.10 Enhanced IDE Support	13
1.11 Keyboard, Mouse and USB Interface	14
1.12 Real-time Clock, CMOS RAM and Battery	15
1.13 IrDA Infrared Support	15
1.14 Power Management	15
1.15 System Power On/Off Control	16
1.16 System Sleep / Resume	17
1.17 System Manageability	17

Chapter 2

Hardware Installation

2.1 Unpacking	18
2.2 Installation	18
2.2.1 Setting DIP Switch	20
2.2.2 Attaching Connectors	22
2.2.3 Installing CPU	26
2.2.4 Removing the Processor	29
2.2.4 Installing System Memory	30
2.2.5 Clear CMOS and Password	31

BIOS Configuration

3.1 Entering Setup

32

3.2 CMOS Setup Utility	33
3.3 Standard CMOS Setup	35
3.4 IDE HDD Auto Detection	37
3.5 Load Setup Defaults	37
3.6 Save & Exit Setup	37
3.7 Exit Without Saving	37
3.8 HDD Low Level Format	37
3.9 BIOS Features Setup	38
3.10 Chipset Features Setup	41
3.11 Power Management Setup	45
3.12 PnP/PCI Configuration	49
3.13 Integrated Peripherals	51
3.14 Supervisor / User Password	54

Chapter 4 Driver a

Priver and Utility	
4.1 Flash Utility	55
4.2 EIDE Bus Master Driver	55

1 Introduction

1.1 Overview

The P6F82 is a quality, high performance, function enhanced mainboard based on the powerful Intel Pentium II processor operating at 233, 266, 300MHz. This mainboard is designed around the latest and fastest Intel 82440LX chipset in an standard ATX form factor.

The P6F82 mainboard delivers workstation level performance with its integrated AGP (Accelerated Graphics Port), Bus Mastering EIDE (Enhanced IDE) controller, concurrent PCI bus, and its ability to accommodate EDO (Extended Data Out) and SDRAM (Synchronous DRAM) memory. When this high data stream bandwidth mainboard is equipped with a powerful 64-bit Pentium II processor with MMX technology and built-in 512KB level 2 cache, your system has the power to handle future demanding communication, multi-media, multi-tasking and intensive 32-bit applications on advanced 32-bit operating systems.

The P6F82 mainboard achieves the highest reliability by supporting the ECC (Error Checking and Correction) memory protections. This enables the P6F82 mainboard to have superior data integrity and be fault-tolerant in respect to memory errors while running applications.

The P6F82 mainboard offers outstanding I/O capabilities. It contains a full set of PC I/O, such as dual channel PCI EIDE interfaces, a floppy controller, two FIFOed serial port connectors, an EPP/ECP capable bidirectional parallel port connector, an IrDA compatible infrared port, two USB (Universal Serial Bus) connector, and a PS/2 keyboard connector and a PS/2 mouse connector. One AGP slot, four PCI local bus slots and three ISA bus slots provide expandability to add on peripheral cards.

P6F82 mainboard is the foundation of OnNow PC, Managed PC and PC97. It also offers optimized system performance, integrated power management and system manageability.

Optimized System Performance: AGP improves the Graphics performance dramatically, Ultra DMA/33 speeds up disk drive access, Enhanced SDRAM support for fastest access to memory, and Concurrent PCI enables simultaneous data transfer.

Integrated Power Management: ACPI (Advanced Configuration and Power Interface) support enables O/S and application programs to direct the system power management.

System Manageability: Optional LM78 Module with LDCM (LanDesk Client Manager) enables the ability to monitor and control system features and functionality such as fan speed, system temperature, system operating voltages, and system configuration.

In addition to superior hardware capabilities, features like bus mastering EIDE driver, Plug and Play, Soft-off, APM (Advanced Power Management), Modem ring on, Watchdog timer wake up, Sleeping state indicator, fan off in sleeping state and BIOS upgradability are provided on the P6F82 platform.

1.2 P6F82 Specifications/Features

Hardware

CPU	Supports Intel Pentium II 233, 266 and 300 (333MHz is reserved) on Slot1 Processor Connector
VRM	Voltage Regulator Modules on board Provides 2.1V to 3.5V operating voltage.
Coprocessor	CPU built-in floating point unit
Speed	System bus clock 66 MHz PCI bus clock 33 MHz ISA bus clock 8.33 MHz
Chipset	Intel's 82440LX AGPset SMC FDC37M672 I/O chip
L2 Cache	CPU built-in 256/512 KB
DRAM	4 x 168-pin DIMM sockets Supports 8MB to 1GB memory Supports EDO and SDRAM memory
EIDE Controller	Supports four IDE devices in two channels Supports PIO mode 0 through mode 4 drive Supports Bus Mastering DMA mode 2 drive Supports Bus Mastering Ultra DMA/33 drive Supports LS-120 drive
Enhanced I/O	One floppy disk controller One Standard/EPP/ECP parallel port connector Two 16550 compatible serial ports connectors One IrDA compatible Infrared port Two USB (Universal Serial Bus) ports
Mouse/Keyboard	PS/2 mouse connector PS/2 keyboard connector

Expansion Slots	One AGP Slot Four 32-bit PCI slots Three 16-bit ISA slots (one PCI/ISA shared slot)
Power Management	Compliant with EPA, APM 1.2 and ACPI ATX soft-off power control Power - On by Ring Power - On by Alarm Sleep state indicator Fan off in sleep mode
Voltage Regulator	Switching regulator CPU voltage auto-detection
Form Factor	ATX Form Factor, 24cm x 30cm (9.6" x 12.0")
Options	System Management Module(SMM)
Software	
BIOS	AWARD Pentium II PCI BIOS Flash BIOS with ESCD (Extended System Configuration Data) block Supports APM, PnP, Multi-Boot, DMI and EIDE devices Support High-Capacity LS-120 Removable Media Drive
Driver	IDE Bus mastering Ultra DMA driver
Utility	Flash utility for BIOS upgrade DMI Browser (option, comes with LDCM)
O.S.	Operates with MS_DOS, Windows 3.x, Windows for Work Groups 3.x, Windows 95, Windows NT, OS/2, Novell Netware, Novell UnixWare 1.1 and SCO Unix 4.2

Environment

Ambient Temperature Relative Humidity Vibration DC Voltage DC Voltage DC Voltage 0°C to 50° C (Operating) 0 to 85% (Operating) 0 to 500 Hz 4.9V to 5.2V 3.15V to 3.50V -5V, +12V, -12V, +5VsB 5% tolerance.

1:CPU Slot1 2:ISA Expansion Slots 3:PCI Expansion Slots 4:AGP Slot 5:DIMM Module Sockets 6:IDE Connectors 7:Floppy Drive Connector 8:Parallel Port Connector Serial Port Connectors

9:IR Port Header

- 10:ATX Power Connector
- 11:PS/2 Keyboard Connector
- PS/2 Mouse Connector
- 12:Flash BIOS
- 13:Switching Regulator
- 14:Front panel Connectors
- 15:Battery (CR2032 Lithium)
- 16:USB Connector

17:DIP Switch 18:CPU FAN Connector 19:Secondary FAN Connector 20:LM78 Module Socket

1.4 Microprocessor

The P6F82 mainboard is designed to operate with the Intel Pentium II processor that runs at 233, 266 or 300 (333MHz is reserved) MHz and has either 256KB or 512KB level 2 cache. An on board switching voltage regulator provides the required 2.1 to 3.5 volts for the processor. The Pentium II processor will send 5 VID (Voltage Identification) signals to the switching voltage regulator, and the switching regulator will generate correct voltage for the processor accordingly.

The Pentium II processor implements MMX technology and maintains full backward compatibility with the 486 and Pentium processors. The processor's numeric coprocessor significantly increases the speed of floating-point operations.

1.5 Pentium II Packaging

The Pentium II is packaged in an S.E.C. (Single Edge Connector) cartridge. The S.E.C. cartridge includes the processor core, the second-level cache, a thermal plate, and a back cover. The Pentium II connects to the P6F82 mainboard through the Slot 1 processor connector, a 242-pin edge connector. When the Pentium II is installed in Slot 1, it is secured by a retention mechanism attached to the mainboard. The Pentium II heatsink is stabilized by a heatsink support which is attached to the mainboard.

1.6 Level 2 Cache

The level 2 cache is located on the substrate of the S.E.C cartridge. The cache includes 256KB or 512KB Pipelined Burst Synchronous Static RAM (PBSRAM) and tag RAM. All onboard system memory can be cached.

1.7 Chipset

The Intel 82440LX AGPset consists of one 82443LX (PAC) System Controller, and one 82371AB (PIIX4) PCI ISA/IDE Accelerator.

82443LX (PAC):	- CPU interface controller				
	- AGP Interface controller				
	- Integrated DRAM controllers				
	- Fully synchronous PCI 2.1 bus interface				
	- Extensive CPU-to-AGP, CPU-to-DRAM,				
	CPU-to-PCI, AGP-to-DRAM, AGP-to-				
	PCI, PCI-to-AGP and PCI-to-DRAM data				
	buffering				
82371AB (PIIX4):	- Interface between the PCI and ISA buses				
. ,	- Power Management Logic				
	- USB controller				
	- EIDE controller				
	- Seven DMA channels, one timer/counter,				
	two eight-channel interrupt controllers,				
	NMI logic, SMI interrupt logic, and PCI/				
	ISA bus arbitrator.				
	- SMBus interface				
	- Real-Time clock				
	- Power Management Logic				

1.8 Main Memory

The P6F82 mainboard provides four 168-pin DIMM sockets to support 8MB to 1GB of system memory. The sockets support 1M x 64 (8MB), 2M x 64 (16MB), 4M x 64 (32MB), 8M x 64 (64MB), 16Mx64(128MB) and 32Mx64(256MB) DIMM in single- or double-sided modules.

The P6F82 supports two types of DRAMs, Extended Data Out (EDO) and Synchronous DRAM (SDRAM). Memory Timing requires 70ns or faster for EDO, and 66.7MHz speed grade for SDRAMs. Each DIMM belongs to different banks, each bank can have different size, type, speed of memory. SDRAM and EDO DIMMs can be mixed within the memory array. There are no jumper

settings required for the memory size and type, which are automatically detected by the BIOS.

The P6F82 mainboard achieves the highest reliability by supporting the ECC (Error Checking and Correction) memory protections. The ECC is a hardware scheme which detects all single and dual-bit errors, and corrects all single-bit error during main memory access. The ECC can be supported only if all the DIMM memory modules hcome with parity bits.

1.9 Accelerated Graphics Port (AGP) slot

The P6F82 mainboard is equipped with an Accelerated Graphic Port slot which is compliant to the AGP specification. The AGP runs at 66MHz clock and supports both 1x and 2x mode for 66MHz/133MHz 3.3V devices. The data transfer rate on the AGP bus may be 4 times as fast as on the PCI bus.

1.10 Enhanced IDE Support

The P6F82 mainboard provides two enhanced high performance PCI IDE interfaces capable of supporting four PIO mode 0 through mode 4, bus-mastering DMA mode 2, and bus-mastering Ultra DMA/33 ATAPI devices. Detection of IDE device type and transfer rate is automatically performed by the BIOS.

The traditional PIO IDE requires a substantial amount of CPU bandwidth to handle all the activities of IDE access including waiting for mechanical activities. The Bus Master logic designed in the Intel 82440LX chipset is intended to reduce the workload of the CPU, hence to increase CPU efficiency. The Bus Master will take care of the data transfer between IDE and memory and let the CPU to handle other tasks. In true multi-tasking operating systems such as Windows 95, Windows NT, and OS/2, by using bus-mastering IDE, the CPU workload can be reduced to complete other tasks while disk data transfers are occurring. The driver must be loaded in order to make the EIDE drive operating at bus-mastering DMA mode.

Operating Mode	Maximum Data Transfer Rate
PIO Mode 3	11.1 MB/Second
PIO Mode 4	16.6 MB/Second
DMA Mode 1	13.3 MB/Second
DMA Mode 2	16.6 MB/Second
Ultra DMA/33	33.2MB/Second

The following is a data transfer rate comparison table for different IDE operating modes:

1.11 Keyboard, Mouse and USB Interface

PS/2 keyboard, PS/2 mouse, and USB connectors are located on the back panel of the P6F82 mainboard. The 5V line to the PS/2 Keyboard and PS/2 Mouse connectors are protected with a PolySwitch circuit that acts like a self-healing fuse, re-establishing the connection after an over-current condition is removed. While this device eliminates the possibility of replacing fuse, you still need to be sure to turn off the system power before connecting or disconnecting a keyboard or mouse.

The P6F82 mainboard has a two USB connectors to support two USB ports. The USB is a serial bus interface standard that is designed to bring the "Plug and Play" concept to the outside of the computer system chassis. The bus allows devices to be attached, configured, used and detached while the host system is in operation.

The USB will allow as many as 63 devices to be daisy chained in any combination per port. With up to 12Mbits/sec transfer rate, USB is suitable for devices such as keyboard, mouse, digital joystick, game pad, fax/modem, scanner, printer, ISDN and telephony device.

1.12 Real-time Clock, CMOS RAM and Battery

The integrated real-time clock (RTC) provides a time of day clock, and an 85-year calendar with alarm features. P6F82 also has 242 bytes battery backed CMOS RAM which stores the system setup information and password. The RTC and CMOS RAM can be set via the BIOS SETUP program. The content of the CMOS RAM can be cleared by placing a shunt to short pin2 and pin3 of JP14 for 5 seconds when the system power is off.

A coin-cell style Lithium CR2302 battery is used to provide power to the RTC and CMOS memory. The battery has a three year life if the system is not powered up. When the system powers up, the power for the RTC and CMOS RAM is supplied from the 5 V power supply to extend the life of the battery.

1.13 IrDA Infrared Support

A 5-pin header connector is used to connect a Hewlett Packard HSDSL-1000 compatible IrDA or Sharp ASKIR Infrared module. Once the module is installed, the user can use application software such as Laplink to transfer files between the computer system and portable devices such as laptops and printers.

1.14 Power Management

The integrated DPMA (Dynamic Power Management Architecture) features in the Intel 440LX AGPSet go far beyond the original vision of the "Green PC" to create exciting new application models for the "OnNow" PC platform. The "OnNow" PC is a PC which is always on and ready for use but appears to be off when not in use. The P6F82 not only complies with EPA, APM1.2 and ACPI (Advanced Configuration and Power Interface), but also provides the following power management features.

- *Power-on by a modem ring in or a watchdog timer (Alarm)* System could be powered on by phone ring, or by software that has requested the PC to wake up at a preset time.

- Sleep mode indicator

The power LED becomes dim when system is in sleep mode.

- Fan off in sleep mode

The CPU cooling fan will be turned off when system is in sleep mode.

1.15 System Power On/Off Control

System power can be turned on by a power button, a modem ring, or an alarm. To enable the "modem ring on" feature, the option "Power-On by Ring" in the BIOS Power Management Setup has to be set to "Enabled". To enable the "alarm on" feature, the option "Power -On by Alarm" in the BIOS Power Management Setup has to be set to "Enabled".

System power can be turned off in one of two ways: a front panel power button or soft-off control. When the option "Power-Off by PWR-BTTN" in the BIOS Power Management Setup is set to "Instant-Off", pressing the power button will immediately turn off the system power. But if the "Power-Off by PWR-BTTN" option is set to "Delay 4 Sec.", you have to press the power button and hold it for more than 4 seconds to turn off the system power. The system power can also be turned off via software control. The system BIOS will turn the system power off when it receives the proper APM command from the Operating System. For example, Windows 95 will issue Soft Off APM command when the user selects "Shutdown" in Start Menu. In order for the Soft Off feature to work properly, Power Management/APM must be enabled in the system BIOS and Operating System.

1.16 System Sleep / Resume

When Advanced Power Management (APM) is activated in the system BIOS and the Operating System 's APM/ACPI driver is loaded, Sleep mode (Suspend) can be entered in one of three ways: press the front panel power button, select "Suspend" in Windows 95 Start Menu or no system activity for a pre-defined length of time. To use the power button to control system sleep/resume, the option "Power-Off by PWR-BTTN" in the BIOS Power Management Setup has to be set to "Delay 4 Sec."

When the system enters the sleep mode, the CPU stops running, the 82440LX AGPset and related circuits stay in the lowest power state, the HDD stops spinning, the monitor screen becomes blank, the power LED indicator on the front panel dims, and the CPU cooling fan and secondary fan are turned off (Note: in order to turn off the fan in sleep mode, you need to connect the CPU cooling fan or Chassis fan to the on-board fan power connectors marked FAN1 or FAN2)

1.17 System Manageability

An optional System Management Module (LM78 Module) with software LDCM (LandDesk Client Manager) allows the local client or system administrator to monitor and/or control system features and functionality such as fan speed (requires fan with tachometer output), system temperature, system operating voltages and system configuration.

2 Hardware Installation

2.1 Unpacking

The P6F82 mainboard package contains the following:

- * P6F82 mainboard
- * One IDE 40-pin ribbon cable
- * One floppy 34-pin ribbon cable
- * One driver/utility diskette
- * User's manual

Before removing the mainboard from its anti-static bag, you need to eliminate any static electricity that may be accumulated on your body by touching a grounded or anti-static surface. If nothing is available, touch the housing of the power supply which is plugged into the AC outlet.

After removing the mainboard from its anti-static bag, place it only on a grounded or anti-static surface, component side up. Inspect the mainboard and call the vendor immediately if it is damaged.

2.2 Installation

The P6F82 is designed to fit into a standard ATX form factor chassis. The pattern of the mounting holes and the position of the back panel connectors meet the ATX system board specification. Chassis may come with various mounting fasteners which are made of metal or plastic. It is highly recommended to use as many metal fasteners as possible to mount the mainboard in the chassis for better grounding.

To install the mainboard you need to set DIP switches, attach connectors, install CPU and DIMM memory modules.

2.2.1 Setting DIP Switch

This section provides the DIP Switch settings for the P6F82 mainboard.

You need to configure DIP Switch to set the CPU core to bus clock multiplier.

CPU Core to Bus Clock Multiplier: The CPU internal core clock is equal to the "CPU Bus Clock" times the "CPU Core to Bus Clock Multiplier". For example, if the CPU Bus Clock is 66MHz and the CPU Core to Bus clock Multiplier is 4.5, the actual CPU core clock will be 300MHz.

CPU Bus Clock: The CPU Bus Clock is defined as the CPU input clock. For example; the CPU Bus Clock for Intel Pentium II 233, 266 and 300 MHz is 66MHz.

CPU Voltage: There is no hardware or BIOS setting needed for CPU operating voltage. The switching regulator circuit can autodetect the CPU type on the P6F82 mainboard and generate the proper operating voltage for the CPU.

The following diagram should be used to clarify how DIP switch settings are to be interpreted

Core to Bus	DIP Switch Setting			
Clock Multiplier	Diagram	P1	P2	P3
66.6MHz x 3 200MHz	ON DIP 1 2 3	ON	OFF	ON
66.6MHz x 3.5 233MHz	ON DIP 1 2 3	OFF	OFF	ON
66.6MHz x 4 266MHz	ON DIP 1 2 3	ON	ON	OFF
66.6MHz x 4.5 300MHz	ON DIP 1 2 3	OFF	ON	OFF
66.6MHz x 5 333MHz	ON DIP 1 2 3	ON	OFF	OFF

R

2.2.2 Attaching Connectors

1. Front Panel Connectors

There are 6 connectors on the mainboard for switches and indicator lights on the system's front panel.

This 4-pin connector connects to the case-mounted speaker.

Pin Assignment 1. LED Cathode 2. N. C. 3. LED Anode (Ground) 4. N.C. 5. N.C.

This 5-pin connector connects to the case-mounted keylock switch and the power LED. The keylock switch is used to lock the keyboard for security purposes.

HDD LED Connector

Pin Assignment 1. LED Anode 2. LED Cathode

This 2-pin connector connects to the case-mounted HDD LED to indicate the hard disk activity.

STB LED Connector

Pin Assignment 1. LED Cathode 2. LED Anode (Ground)

This 2-pin connector connects to the case-mounted STB LED switch.

Reset Connector

Pin Assignment 1. Power Good 2. Ground

This 2-pin connector connects to the case-mounted reset switch and is used to reboot the system.

Power Switch Connector

Pin Assignment 1. Power On/Off 2. Ground

This 2-pin connector connects to the case-mounted Power switch.

The front panel on your case may have a turbo switch to deactivate the Turbo mode when a slower speed is required for a specific application. The Intel 82440LX chipset does not support the hardware deturbo function. An alternative method of using <CTRL><ALT><+/-> keys to change the speed may be used if necessary.

2. Fan Connectors

1	Pin Assignment
	1. GND
	2. +12V
	3. SPEED / RPM

There are two fan connectors on the P6F82 mainboard for the cooling fans. The connectors support fans of 500mAMP (6 WATT) or less. When the system goes into sleep state, fan should be shut down to eliminate audible noise and reduce power consumption. To monitor the fan speed, you need an optional System Management Module, and the fan must come with a tachometer output.

3. IrDA-compliant IR (Infrared) Connector

Pin Assignment 1. +5V 2. IRM_IRR 3. IR Receiver

- 4. Ground
- 5. IR Transmitter

This 5-pin connector connects to an optional wireless transmitting and receiving infrared module via a cable and a bracket.

4. Floppy Drive Connector (One 34-pin Block)

A floppy disk drive ribbon cable has 34 wires and 2 connectors to support 2 floppy disk drives. The connector with twisted wires always connects to drive A, and the connector whit untwisted wires connects to drive B. You must orient the cable connector so that the pin 1(color) edge of the cable is at the pin 1 of the I/O port connector.

5. IDE Connectors (Two 40-pin Block)

An IDE drive ribbon cable has 40 wires and 2 connectors to support two IDE drives. If a ribbon cable connects to two IDE drives at the same time, one of them has to be configured as Master and the other has to be configured as Slave by setting the drive select jumpers on the drive.

Consult the documentation that comes with your IDE drive for details on jumper locations and settings. You must orient the cable connector so that the pin 1(color) edge of the cable is at the pin 1 of the I/O port connector.

6. Back Panel Connectors

The back panel provides external access to PS/2 style keyboard and mouse connectors as well as two serial ports, and one parallel port which are integrated on the mainboard. The figure below shows the location of the back panel I/O connectors.

7. Power Supply Connector

The ATX power supply has a single lead connector with a clip on one side of the plastic housing. There is only one way to plug the lead into the ATX power connector. Press the lead connector down until the clip snaps into place and secures the lead onto the connector.

Incorrect installation of the power supply could result in serious damage to the mainboard and connected peripherals. Make sure the power supply is unplugged from the AC outlet before connecting the leads from the power supply.

2.2.3 Installing CPU

Before You Begin

- 1. Be sure that your Intel boxed processor kit includes the following items:
 - \cdot the processor with the fan or heatsink attached
 - \cdot one heatsink support set containing two black plastic pegs and two black plastic supports.
 - \cdot one power cable (for CPU with cooling fan attached only)
 - \cdot one Intel Inside $\ensuremath{\mathbb{R}}$ Pentium II processor program label
- 2. Place the motherboard on a workbench (not in a chassis). Be sure that the motherboard is bare (that is, no SIMMs, cables, or cards are installed) and that the holes for the fan heatsink support pegs are empty.
- 3. Install the retention mechanism onto the motherboard by following the manufacturer's instructions. (Shown installed in the following figure.)

Installing the Boxed Processor

1. Mount the two black plastic pegs onto the motherboard. These pegs will be used to attach the fan or heatsink supports. Notice that one hole and the base of one peg are larger than the other hole and peg base. Push each peg into its hole firmly until you hear it "click" into place.

2. Slide a black plastic support onto each end of the fan or heatsink, making sure that the hole and clip are on the outside edge of the support. (If the supports are reversed, the holes will not line up with the pegs on the motherboard.) Slide each support toward the center of the processor until the support is seated in the outside groove in the fan housing.

- 3. Slide the clip (A) on each support toward the processor, exposing the hole that will fit over the peg on the motherboard. Push the latches (B) on the processor toward the center of the processor until they click into place. (Refer to the figure below.)
- 4. Hold the processor so that the fan shroud is facing toward the pegs on the motherboard. Slide the processor (C) into the retention mechanism and slide the supports onto the pegs. Ensure that the pegs on the motherboard slide into the holes in the heatsink support and that the alignment notch in the processor fits over the plug in Slot 1. Push the processor down firmly, with even pressure on both sides of the top, until it is seated.

5. Slide the clips on the supports (D) forward until they click into place to hold the pegs securely. (Apply slight pressure on the peg and push the peg toward the clip while pushing the clip forward.) Push the latches on the processor (E) outward until they click into place in the retention mechanism. The latches must be secured for proper electrical connection of the processor.

6. Attach the small end of the power cable (F) to the three-pin connector on the processor, then attach the large end to the three-pin connector on the motherboard, which is marked FAN1)

2.2.4 Removing the Processor

First, remove the motherboard from the chassis. To remove the processor from the motherboard, follow these steps (the reverse of the installation procedure).

- 1. Disconnect the fan power cable from the motherboard. (We recommend that you leave the cable connected to the processor.)
- 2. Slide the clips on the supports backward to release the pegs in the motherboard. Push the latches on the processor toward the center of the processor until they click into place.
- 3. Lift one end of the processor until it is freed from Slot 1. Lift the other end of the processor until it is freed from Slot 1. Lift the entire processor (with the fan or heatsink supports attached) until it is free from the retention mechanism.
- 4. Remove the heatsink support pegs from the motherboard and discard them. With one hand, squeeze together the two halves of the peg on the bottom side of the motherboard. With the other hand, pull the peg out of the hole in the motherboard. Do not reuse the pegs.

When handling the processor, avoid placing direct pressure on the label area of the fan.

When removing the processor, avoid pressing down on the motherboard or components. Instead, press down on plastic connectors.

IDE2 Connector

2.2.5 Installing System Memory

The maximum system memory supported by the Intel 440LX AGPset is 1GB. If more than 1GB memory are populated on the P6F82 mainboard, the portion of the memory which exceed the 1GB boundary will be invalidated.

The P6F82 Mainboard has four DIMM Sockets. Memory can be installed by using 168-pin SDRAM DIMM or EDO DIMM memory modules. There are no jumper settings required for the memory size or type, which is automatically detected by the BIOS. Due to the P6F82 Mainboard high speed design, the memory modules for the P6F82 must meet all of the following requirement:

<u> </u>	DIMM 4	DIMM 3	DIMM 2	DIMM 1
FDC Connector IDEI Connector	BANK 3	BANK 2	BANK 1	BANK 0
sw				

DRAM TYPE	EDO (Extended Data Output)	SDRAM (Synchronous DRAM)
Module Size	Single-Sided	Single-sided
	Symmetric: 1Mx64, 4Mx64,	Asymmetric: 1Mx64, 2Mx64,
	16Mx64	4Mx64, 8Mx64,
	Asymmetric: 1Mx64, 2Mx64,	16Mx64,
	4Mx64, 8Mx64	Double-Sided
	Double-Sided	Asymmetric: 2Mx64, 4Mx64,
	Symmetric: 2Mx64, 8Mx64,	8Mx64, 16Mx64,
	32Mx64	32Mx64
	Asymmetric: 1Mx64, 2Mx64,	
	4Mx64, 8Mx64,	
	16Mx64	
Requirements	DRAM Speed: 60ns or 70ns	3.3V unbuffered DIMM module
	RAS Access Time : 60ns ~70ns	Speed grade: 66.7MHz
	CAS Access Time: 10ns ~20ns	CAS latency: 3 or faster

Install 168-pin DIMM modules in any combination as follows:

BANK 0 (DIMM1)	SDRAM/EDO 8MB, 16MB, 32MB, 64MB, 128MB, 256MB
BANK 1 (DIMM2)	SDRAM/EDO 8MB, 16MB, 32MB, 64MB, 128MB, 256MB
BANK 2 (DIMM3)	SDRAM/EDO 8MB, 16MB, 32MB, 64MB, 128MB, 256MB
BANK 3 (DIMM4)	SDRAM/EDO 8MB, 16MB, 32MB, 64MB, 128MB, 256MB
Total System Memory	8MB to Max. 1GB

168-Pin DIMM Modules Memory Configuration.

2.2.6 Clear CMOS and Password

If your system can not boot up because you forget your password, or the CMOS settings need to be reset to default values after the system BIOS has been updated, the following instructions can be performed to clear the CMOS and password.

- 1. Power off the system
- 2. Place a shunt to short pin2 and pin3 of JP14 for 5 seconds
- 3. Put the shunt back to pin1 and pin2 of JP14
- 4. Power on the system

3 BIOS Configuration

After hardware configuration of P6F82 Mainboard is completed, and system hardware has been assembled, the completed system may be powered up. At this point, CMOS setup should be run to ensure that system information is correct.

Normally, CMOS setup is needed when the system hardware is not consistent with the information contained in the CMOS RAM, whenever the CMOS RAM has lost power, or the system features need to be changed.

3.1 Entering Setup

When the system is powered on, the BIOS will enter the Power-On Self Test (POST) routines. These routines perform various diagnostic checks; if an error is encountered, the error will be reported in one of two different ways. If the error occurs before the display device is initialized, a series of beeps will be transmitted. If the error occurs after the display device is initialized, the screen will display the error message.

After the POST routines are completed, the following message appears:

"Press DEL to enter SETUP"

To access the AWARD BIOS SETUP program, press the key. The "CMOS SETUP UTILITY" screen will be displayed at this time.

3.2 CMOS SETUP UTILITY

Main Program Screen

ROM PCI/ISA BIOS (2A59IF2B) CMOS SETUP UTILITY AWARD SOFTWARE, INC.		
STANDARD CMOS SETUP IDE HDD AUTO DETECTION LOAD SETUP DEFAULTS SAVE & EXIT SETUP EXIT WITHOUT SAVING HDD LOW LEVEL FORMAT	BIOS FEATURES SETUP CHIPSET FEATURES SETUP POWER MANAGEMENT SETUP PNP/PCI CONFIGURATION INTEGRATED PERIPHERALS SUPERVISOR PASSWORD USER PASSWORD	
Esc: Quit F10: Save & Exit Setup -Shift>F2 : Select Item : Change Color		
Time, Date, Hard Disk Type		

This screen provides access to the utility's various functions.

Listed below are explanations of the keys displayed at the bottom of the screen:

<ESC>: Exit the utility.

ARROW KEYS: Use arrow keys to move cursor to desired selection.

<F10>: Saves all changes made to Setup and exits program.

<Shift> <F2>: Changes background and foreground colors.

3.3 STANDARD CMOS SETUP

Selecting "STANDARD CMOS SETUP "on the main program screen displays this menu:

Standard CMOS Setup Screen

ROM PCI/ISA BIOS (2A59IF2B) STANDARD CMOS SETUP AWARD SOFTWARE, INC.							
Date (mm:dd:yy): Sun, Mar 23 1997 Time (hh:mm:ss): 10:10:10							
HARD DISKS TYPE	SIZE	CYLS	HEAD	PRECOMP	LANDZ	SECTOR	MODE
Primary Master : Auto	0	0	0	0	0	0	Auto
Primary Slave : Auto	0	0	0	0	0	0	Auto
Secondary Master : Auto	0	0	0	0	0	0	Auto
Secondary Slave : Auto	0	0	0	0	0	0	Auto
Drive A: 1.44M, 3.5 in.							
Drive B: None Base Memory: 640K				640K			
Floppy 3 Mode Support	Floppy 3 Mode Support: Disabled				Extended Memory: 15360K		
Video: EGA/VGA				Other Memory: 384K			
Halt On: All Errors					Total Memory: 16384K		
ESC: Quit $\checkmark \rightarrow \rightarrow$: Select ItemF1: Help(Shift) F2: Change Color			n olor	PU/PD/+/	-:Modify		

The Standard CMOS Setup utility is used to configure the following features:

Set Date: Month, Day, Year.

Set Time: Hour, Minute, and Second. Use 24 Hour clock format (for PM numbers, add 12 to the hour, you would enter 4:30 p.m. As 16:30).

Hard Disks:

There are four hard disks listed: "Primary Master", "Primary Slave", "Secondary Master" and "Secondary Slave". For Each

IDE channel, the first device is the "Master" and the second device is "Slave".

Hard disk Types from 1 to 45 are standard ones; Type "Auto" is IDE HDD auto detection; Type "User" is user definable, and Type "None" is not installed (e.g. SCSI).

There are six categories of information you must enter for a HDD: "CYLS" (number of cylinders), "HEAD" (number of heads), "PRECOMP" (write pre-compensation), "LANDZ" (landing zone), "SECTOR" (number of sectors) and "MODE" (Normal, LBA, LARGE and AUTO). The hard disk vendor's or system manufacturer's documentation should provide you with the information needed. The "MODE" option is for IDE hard disk drives only. The "MODE" has four options: NORMAL, LBA, LARGE and AUTO. Set MODE to NORMAL for IDE hard disk drives smaller than 528MB. Set MODE to LBA for IDE hard disk drives over 528MB which support Logical Block Addressing mode. Set MODE to LARGE for IDE hard disk drives over 528MB which do not support LBA mode. The LARGE type of drive is very uncommon and can only be used under MS-DOS. Currently most IDE hard disk drives over 528MB support LBA mode. Set MODE to AUTO to enable auto detection of your IDE hard disk drive during bootup.

Floppy Drive A and Floppy Drive B: The options are: "360K, 5.25 in.", "1.2M, 5.25in.", "720K, 3.5in.", "1.44M, 3.5in.", "2.88M, 3.5in." and "None (Not Installed)". Not Installed could be used as an option for diskless workstations.

Floppy 3 Mode Support: The options are "Disabled" (default), "Drive A", "Drive B" and "Both". This is the Japanese standard floppy drive which stores 1.2MB in a 3.5" diskette. **Video:** Set it to the type of graphics card installed in your system. If you are using a VGA or higher resolution card, choose the "EGA/VGA" option. The options are "EGA/VGA" (default), "Mono", "CGA 40" and "CGA 80".

Halt On: The options are "All Errors" (default), "No Errors", "All, But Keyboard", "All, But Diskette" and "All, But Disk/Key". This setting determines which type of errors will cause the system to halt during bootup.

3.4 IDE HDD AUTO DETECTION

If your system has an IDE hard drive, you can use this utility to detect its parameters and enter them into the Standard CMOS Setup automatically.

If the auto-detected parameters displayed do not match the ones that should be used for your hard drive, do not accept them. Press the $\langle N \rangle$ key to reject the values and enter the correct ones manually on the Standard CMOS Setup screen.

Note: If you are setting up a new hard disk drive (nothing on it) that supports LBA mode, more than one line will appear in the parameter box, choose the line that lists LBA for an LBA drive.

Do not choose Large or Normal if the hard disk drive is already fully formatted when you install it, choose the mode which is used to format it.

3.5 LOAD SETUP DEFAULTS

"LOAD SETUP DEFAULTS" loads optimal settings which are stored in the BIOS ROM.

The defaults loaded only affect the BIOS Features Setup, Chipset Features Setup, Power Management Setup, PnP/PCI configuration setup and Integrated Peripherals Setup. There is no effect on the Standard CMOS Setup. To use this feature, highlight on the main screen and press <Enter>. A line will appear on the screen asking if you want to load the Setup default values. Press the <Y> key and then press the <Enter> key if you want to load the Setup defaults. Press <N> if you don't want to proceed.

3.6 SAVE & EXIT SETUP

Selecting this option and pressing the <Enter> key will save the new setting information in the CMOS memory and continue with the booting process.

3.7 EXIT WITHOUT SAVING

Selecting this option and pressing the <Enter> key will exit the Setup Utility without recording any new values or changing old ones.

3.8 HDD LOW LEVEL FORMAT

Selecting this option and pressing the <Enter> key will enable you to perform a low level format of the hard disk drive.

3.9 BIOS FEATURES SETUP

Selecting "BIOS FEATURES SETUP" on the main program screen displays this menu:

	_			
ROM PCI/ISA BIOS (2A59IF2B) BIOS FEATURES SETUP AWARD SOFTWARE, INC.				
Virus Warning CPU Internal Cache External Cache	: Disabled : Enabled	Video BIOS Shadow : Enabled C8000 - CBFFF Shadow : Disabled CC000 - CFFFF Shadow : Disabled D0000 - D3FEF Shadow : Disabled		
Quick Power On Self Test Boot Sequence Swap Floppy Drive Boot Un Elonpy Seek	: Enabled : C, A, SCSI : Disabled : Disabled	D4000 - D7FFF Shadow : Disabled D8000 - D8FFF Shadow : Disabled DC000 - DFFFF Shadow : Disabled DC000 - DFFFF Shadow : Disabled		
Boot Up NumLock Status Gate A20 Option	: On : Fast	Report No FDD For WIN95 : Yes		
Typematic Rate Setting Typematic Rate (Chars/Sec) Typematic Delay (Msec)	: Disabled : 6 : 250	ESC: Quit ↓ → ← :Select Item		
Security Option PCI/VGA Palette Snoop	: Setup : Disabled	F1: HelpPU/PD/+/-:ModifyF5: Old Values(Shift) F2: ColorF7: Load Setup Defaults		

BIOS Features Setup Screen

The following explains the options for each feature:

Virus Warning: The Virus Warning's default setting is "Disabled". When enabled, any attempt to write to the boot sector or partition table will halt the system and cause a warning message to appear. If this happens, you can use an anti-virus utility on a virus free, bootable floppy diskette to reboot and clean your system.

CPU Internal Cache: The default setting is "Enabled". This Setting enables the CPU internal cache.

External Cache: The default setting is "Enabled". This setting enables the external cache.

Quick Power On Self Test: The default setting is "Enabled". This will skip some diagnostic checks during the Power On Self Test (POST) to speed up the booting process.

Boot Sequence: The default setting is "C, A, SCSI"; the other option are "CDROM, C, A", "C, CDROM, A", "A, C, SCSI", "D, A, SCSI", "E, A, SCSI", "F, A, SCSI", "SCSI, A, C", "SCSI, C, A" and "C only". The BIOS will load the operating system from the disk drives in the sequence selected here.

Swap Floppy Drive: The default setting is "Disabled". This setting gives you an option to swap A and B floppy disks. Normally the floppy drive A is the one at the end of the cable, if you set this option to "Enabled", the drive at the end of the cable will be swapped to B.

Boot Up Floppy Seek: The default setting is "Disabled". If set to "Enabled" during bootup the BIOS will check for an installed floppy disk drive.

Boot Up Numlock Status: The default setting is "On". If set to "Off", the cursor controls will function on the numeric keypad.

Gate A20 Option: the defaults setting is "Fast". This is the optimal setting for the Mainboard. The other option is "Normal".

Typematic Rate Setting: The default setting is "Disabled". If set to "Enabled", you can set the typematic Rate and typematic Delay.

Typematic Rate (Chars/Sec): This setting controls the speed at which the system registers repeated keystrokes. The choices range from 6 to 30 Chars/Sec. The default setting is "6" Chars/Sec.

Typematic Delay (Msec): This setting controls the time between the display of the first and second characters. There are four delay choices: 250ms, 500ms, 750ms and 1000ms. The default setting is "250" ms.

Security Option: This setting controls the password feature. The options are "Setup" and "System". Selecting "Setup" will protect the configuration settings from being tampered with. Select "System" if you want to use the password feature every time the system boots up. The default setting is "Setup". You can create your password by using the "SUPERVISOR/USER PASSWORD" utility on the main program screen.

PCI/VGA Palette Snoop: If there are two VGA cards in your system (one PCI and one ISA) and this option is set to "Disabled", data read and written by CPU is only directed to the PCI VGA card's palette registers. If set to "Enabled", data read and written by CPU will be directed to both the palette registers of the PCI VGA and ISA VGA cards. This option must be set to "Enabled" if any ISA VGA card installed in your system requires VGA palette snooping to fix improper color problem.

Video BIOS Shadow: The default setting is "Enabled" which will copy the VGA BIOS into system DRAM.

C8000-CBFFF Shadow to DC000-DFFFF Shadow: The default setting for the shadow feature is "Disabled". When set to enable, the ROM with the specific address is copied into system DRAM. It will also reduce the size of memory available to the system.

OS Select For DRAM > **64MB**: The default setting is "Non-OS2". Set to "OS2" if the system memory size is greater than 64MB and the operating system is OS/2.

After you have made your selection(s) in the BIOS FEATURES SETUP, press the <ESC> key to go back to the main program screen.

3.10 CHIPSET FEATURES SETUP

Selecting "CHIPSET FEATURES SETUP" on the main program screen displays this menu:

*		
	ROM PCI/ISA BI CHIPSET FEAT AWARD SOFI	OS (2A59IF2B) URES SETUP WARE, INC.
Auto Configuration DRAM Speed Selection MA Wait State EDO RAS# To CAS# Delay EDO RAS# Precharge Time EDO DRAM Read Burst EDO DRAM Weite Burst	: Enabled : 60 ns : Slow : 3 : 3 : x333 : x222	CPU-To-PCI IDE Posting: EnabledAGP Aperture Size (MB): 64Memory Hole At 15M-16M: DisabledPassive Release: EnabledDelayed Transaction: Disabled
SDRAM RAS-to-CAS Delay SDRAM RAS Precharge Time SDRAM CAS Latency Time DRAM Data Integrity Mode	: Fast : Fast : S : Non-ECC	Current System Temp. : FAN1 Speed : FAN2 Speed : Vcc3 : + Vccp : + + 12V : + +5V : + - 5V : - - 12V : -
System BIOS Cacheable Video BIOS Cacheable Video RAM Cacheable 8 Bit I/O Recovery Time 16 Bit I/O Recovery Time	: Enabled : Enabled : Disabled : 1 : 1	ESC: Quit ↓ → ← :Select Item F1: Help PU/PD/+/-:Modify F5: Old Values (Shift) F2: Color F7: Load Setup Defaults

Chipset Features Setup Screen

This screen controls the settings for the board's chipset. All the entries related to the DRAM timing and ISA clock on the screen are automatically configured. Do not make any change unless you are familiar with the chipset.

Auto Configuration: The default setting is "Enabled" which will set optimal DRAM timing automatically depending on whether the DRAM used is 70ns or 60ns. The other option is "Disabled" which allows you to change DRAM timing manually.

DRAM Speed Selection: This option should be set according to the speed of the DRAM in the system. The options are "60ns" and "70ns".

MA Wait State: This option selects "FAST" or "SLOW" memory MA bus timing. For EDO, the SLOW timing is equal to FAST+1 in terms of clock numbers. For SDRAM, FAST timing means zero MA wait state.

EDO RAS# to CAS# Delay: The options are "2" and "3". This option controls the number of clocks delay in assertion of CAS# (SCAS#) from assertion of RAS# (SRAS#). The default setting is "3".

EDO RAS# Precharge Time: The options are "3" and "4". This option set the length of time in terms of number of clocks required for the RAS# precharge. The default setting is "3".

EDO DRAM Read Burst: The options are "x222" and "x333". This option set the DRAM read burst Timing. Slower rates may be required for slower memory. Normally set this option to "x222" for 50ns DRAMs and set to "x333" for 60ns DRAMs.

EDO DRAM Write Burst: The options are "x222" and "x333". This option set the DRAM write burst Timing. Slower rates may be required for slower memory.

SDRAM RAS-to-CAS Delay: The options are "FAST" and "SLOW". This option controls the number of clocks delay in assertion of CAS# (SCAS#) from assertion of RAS# (SRAS#). The default setting is "FAST".

SDRAM RAS Precharge Time: The options are "FAST" and "SLOW". This option set the length of time in terms of number of clocks required for the SDRAM RAS# precharge. The default setting is "FAST".

SDRAM CAS Latency Time: The options are "2" and "3". Slower rate "3" may be required for slower SDRAMs or more than 2 banks of SDRAM DIMMs installed. The default setting is "3".

DRAM Data Integrity Mode: The options are "ECC" and "Non-ECC". Set to "ECC" only when DIMM modules with parity bits are used. This will enable the Error Checking and Correction function to ensure the data integrity

System BIOS Cacheable: When set to "Enabled", the System BIOS will be cached for faster execution. The default setting is "Enabled".

Video BIOS Cacheable: When set to "Enabled", the Video BIOS will be cached for faster execution. The default setting is "Enabled".

8 Bit I/O Recovery Time: This option sets the delay between back-to-back 8-bit I/O instructions. The options are 1, 2, 3, 4, 5, 6, 7, 8 Sysclks and NA. The default setting is "1".

16 Bit I/O Recovery Time: This option sets the delay between back-to-back 16-bit I/O instructions. The options are 1, 2, 3, 4 Sysclks and NA. The default setting is "1".

CPU-TO-PCI IDE Posting: When set to "Enabled", CPU write to IDE will be posted in the chipset's buffers to optimize performance. The default setting is "Enabled".

AGP Aperture Size (MB): This option determines the effective size of the AGP Graphic Aperture which memory-mapped, graphics data structures can reside in.

Memory Hole At 15M-16M: The default setting is "Disabled". Set to "Enabled" means that when the system memory size is equal to or greater than 16M bytes, the physical memory address from 15M to 16M will be passed to PCI or ISA and there will be 1MBytes hole in your system memory. This option is designed for some OS with special add-in cards which need 15M-16M memory space.

Passive Release: When set to "Enabled", CPU-to PCI bus accesses are allowed during passive release. When set to "Disabled", only PCI bus-master access to local DRAM is allowed during passive release.

Delayed Transaction: When this option is set to "Enabled", a read cycle from PCI bus-master to DRAM is immediately retried due to any pending CPU-to-PCI cycle. To enable the PCI concurrency, both "Passive Release" and "Delayed Transaction" options have to be set to "Enabled".

After you have made your selections in the CHIPSET FEATURES SETUP, press the <ESC> key to go back to the main program screen.

3.11 POWER MANAGEMENT SETUP

The "Power Management Setup" controls the mainboard's "Green" features.Selecting "POWER MANAGEMENT SETUP" on the main program screen displays this menu:

6			
ROM PCI/ISA BIOS (2A59IF2B) POWER MANAGEMENT SETUP AWARD SOFTWARE, INC.			
Power Management PM Control by APM Video Off Method	: Disabled : Yes : V/H SYNC+Blank	** Reload Global Timer Events ** IRQ [3-7, 9-15], NMI : Enabled Primary IDE 0 : Disabled	
Doze Mode Standby Mode Suspend Mode HDD Power Down	: Disabled : Disabled : Disabled : Disabled	Primary IDE 0 : Disabled Secondary IDE 0 : Disabled Secondary IDE 1 : Disabled Floppy Disk : Disabled Serial Port : Disabled Primary IDE 1 : Disabled Propy Disk : Disabled Serial Port : Disabled Propy Disk : Disabled	
Fan Off in Suspend	: Enabled	Mouse Break Suspend : No(COM1)	
Soft-Off by PWR-BTTN	: Instant - Off	Modem Use IRQ : 3	
Power-On by Ring	: Enabled		
Power-On by Alarm	: Disabled	ESC: Quit $\downarrow \rightarrow \prec$:Select Item F1: Help $PU/PD/+/-:Modify$	
IRQ 8 Break Suspend	: Disabled	F5: Old Values (Shift) F2: Color F7: Load Setup Defaults	

Power Management Setup Screen

Power Management: This setting controls the System Doze Mode, Standby Mode and Suspend Mode Timer features. There are four options:

User Define: Allows you to customize all power saving timer features.

Optimize: This is the recommended setting for general use.

Test/Demo: This is for test/demonstration purposes.

Disable: Disables the power management features.

PM Control by APM: The default setting is "Yes". When set to "Yes", system BIOS will wait for APM's prompt before it enters any PM mode. If your system power management is controlled by APM and there is a task running, the APM will not prompt the BIOS to enter any power saving mode after time out. Note: If APM is not installed, this option has no effect.

APM (Advanced Power Management) should be installed to keep the system time updated when the computer enters suspend mode activated by the BIOS Power Management. For DOS environments, you need to add DEVICE=C:\DOS\POWER.EXE in your CONFIG.SYS. For Widows 3.1x and Windows 95, you need to install Windows with the APM feature. Double-click a battery and power cord icon labeled "Power" in the "Control Panel" and choose "Advanced" in the Power Management field.

Video Off Method: This setting controls the video off method in power saving mode. The default setting is "DPMS" (Display Power Management System) which allows the BIOS to control the video card if it has the DPMS feature. Other options are "V/H SYNC+Blank" and "Blank Screen". The "V/H SYNC+Blank" option disables V/H SYNC signals and blanks the screen. The "Blank Screen" option is used when you do not have a "Green" monitor.

Doze Mode: Options are from "30 Sec" to "1 Hour" and "Disable". The system speed will change from turbo to slow if no Power Management events occur for a specified length of time. Full power function will return when a Power Management event is detected.

Standby Mode: Options are from "30 Sec" to "1 Hour" and "Disable". The system speed will change from turbo to slow and the video signal will be suspended if no Power Management events occur for a specified length of time. Full power function will return when a Power Management event is detected.

Suspend Mode: Options are from "30 Sec" to "1 Hour" and "Disable". The CPU clock will be stopped and the video signal will be suspended if no Power Management events occur for a specified length of time. Full power function will return when a Power Management event is detected.

HDD Power Down: Options are from "1 Min" to "15 Min" and "Disable". The IDE hard drive will spin down if it is not accessed within a specified length of time.

FAN off in Suspend: If set to "Enabled" CPU fan will be turned off in Suspend Mode.

Power-Off by PWR-BTTN: The options are "Instant-Off" and "Delay 4 Sec.". When set to "Instant-Off", pressing the power button will turn off the system power. When set to "Delay 4 Sec.", you have to press the power button and hold it for more than 4 seconds to turn off the system power. Otherwise the system just go to the sleep mode. Note: During the booting process, the power button is ignored. The default setting is "Instant-Off".

Power-On by Ring: If "Enabled" the system power will be turned on if an FAX/Modem receives an incoming telephone ringing. (Note: you need to use ATX power supply to have this feature on P6F82)

Power-On by Alarm: If "Enabled" you may set the date (day of month), hour, minute and second to turn on your system. When you set "0" (zero) for the day of the month, the alarm will power on your system every day at the time of day specified. (Note: you need to use ATX power supply to have this feature on P6F82)

IRQ 8 Break Suspend: When this option and the option of "Power-On by alarm" are both set to "Enabled", you may set the date (day of month), hour, minute and second to wake up your system from sleep mode.

Reload Global Timer Events: When a hardware event is enabled, the occurrence of a corresponding event will reload global timer to prevent the system from entering any Power Management mode.

Mouse Break Suspend: The options are "Yes", "No(COM1)", "No(COM2)" and "No(PS/2)". When set to "Yes" the mouse activity can wake up your system from sleep mode. If you do not want the mouse wake up the system due to the sensitivity of the mouse, you can set this option to "No(COM1)" or "No(COM2)" depending on which COM port is connected to your serial mouse or set to "No(PS/2)" if you are using a PS/2 mouse.

Modem Use IRQ: To enable the internal PnP modem ring wake up your system from sleep mode, the IRQ assigned to the modem has to the same as the setting in this option.

Press the <ESC> key to go back to the main program screen, after you have made your selections in the POWER MANAGEMENT SETUP.

3.12 PNP / PCI CONFIGURATION

Both the ISA and PCI buses on the Mainboard use system IRQs & DMAs. You must set up the IRQ and DMA assignments correctly thru the PnP/PCI Configuration Setup utility, otherwise the Mainboard will not work properly.

Selecting "PNP / PCI CONFIGURATION" on the main program screen displays this menu:

ROM PCI/ISA BIOS (2A59IF2B) PNP / PCI CONFIGURATION AWARD SOFTWARE, INC.			
PNP OS Installed: NoResources Controlled By: ManualReset Configuration Data: DisabledIRQ-3 assigned to: Legacy ISAIRQ-4 assigned to: Legacy ISAIRQ-5 assigned to: PCI / ISA PnPIRQ-7 assigned to: PCI / ISA PnPIRQ-9 assigned to: PCI / ISA PnPIRQ-10 assigned to: PCI / ISA PnPIRQ-11 assigned to: PCI / ISA PnPIRQ-12 assigned to: PCI / ISA PnPIRQ-14 assigned to: PCI / ISA PnPIRQ-14 assigned to: Legacy ISAIRQ-14 assigned to: Legacy ISAIRQ-14 assigned to: Legacy ISA	PCI IDE IRQ Map To : PCI - AUTO Primary IDE INT# : A Secondary IDE INT# : B Used MEM base addr. : N/A Assign IRQ For USB : Enabled		
IRQ-15 assigned to : Legacy ISA DMA-0 assigned to : PCI / ISA PnP DMA-1 assigned to : PCI / ISA PnP DMA-3 assigned to : PCI / ISA PnP DMA-5 assigned to : PCI / ISA PnP DMA-6 assigned to : PCI / ISA PnP DMA-6 assigned to : PCI / ISA PnP DMA-6 assigned to : PCI / ISA PnP DMA-7 assigned to : PCI / ISA PnP	ESC: Quit F1: Help F5: Old Values (Shift) F2: Color F7: Load Setup Defaults		

PNP / PCI Configuration

PNP OS Installed: Set this option to "Yes", to allow the PNP OS instead of BIOS to assign the system resources such as IRQ and I/O address to the ISA PNP device. The default setting is "No"

Resources Controlled By: The default setting is "Auto" which will detect the system resources and automatically assign the relative IRQs and DMAs for each peripheral. The other

option is "Manual" which allows you to control IRQs and DMAs individually.

Reset Configuration Data: The system BIOS supports the Plug and Play feature so the resource assigned to each peripheral has to be recorded to prevent resources from conflicting. The location to store the assigned resources is called ESCD which is located in the system flash EEPROM. If this option is set to "Disabled" the ESCD will update automatically when the new configuration varies from the last one. If set to "Enabled", the ESCD will be cleared and forced to update and then auto set this option to "Disabled".

IRQ and DMA Assigned to.: If there is a legacy ISA device which uses an IRQ or a DMA, set the corresponding IRQ or DMA to "Legacy ISA", otherwise you should set to PCI/ISA PnP.

PCI IRQ Actived By: Options are "Level" or "Edge". The default setting is "Level". This option is used to select the IRQ's trigger method.

PCI IDE IRQ Map To, Primary IDE INT#, Secondary IDE INT#: If you disable onboard PCI IDE controller and install a PCI IDE card on the Mainboard, you need to set this option. If a PCI IDE Card an uses ISA IRQ directly thru a paddle card installed on an ISA slot, select "ISA" for the option "PCI IDE IRQ Map To". If a PCI IDE Card uses PCI "INT" and is compliant to PCI Plug and Play specification, select "PCI-AUTO" for the option "PCI IDE IRQ Map To". Otherwise select "PCI-SLOT n" (PCI-SLOT 1, PCI-SLOT 2 or PCI-SLOT 3) depending on which slot the PCI IDE Card is installed.

Only INT A and INT B are available for a PCI IDE Card, therefore you must set the PCI IDE Card's primary interrupt to INT A and secondary interrupt to INT B. The INT A is routed to IRQ 14 and the INT B is routed to IRQ 15 thru a hardware router in the chipset.

After you have made your selections in the PNP / PCI Configuration SETUP, press the <ESC> key to go back to the main program screen.

3.13 INTEGRATED PERIPHERALS

Selecting "INTEGRATED PERIPHERIALS" on the main program screen displays this menu

Integrated Peripheral Screen

ROM PCI/ISA BIOS (2A59IF2B) INTEGRATED PERIPHERALS AWARD SOFTWARE, INC.			
IDE HDD Block Mode IDE Primary Master PIO IDE Primary Slave PIO IDE Secondary Master PIO IDE Secondary Slave PIO IDE Primary Slave UDMA IDE Primary Slave UDMA IDE Secondary Master UDMA IDE Secondary Slave UDMA On-Chip Primary PCI IDE On-Chip Secondary PCI IDE USB Keyboard Support	 Enabled Auto Auto Auto Auto Auto Auto Auto Auto Enabled Enabled Disabled 	UART2 Mode Onboard Parallel Port Parallel Port Mode	: Standard : 378 / IRQ7 : Normal
Onboard FDD Controller Onboard Serial Port 1 Onboard Serial Port 2	: Enabled : 3F8 / IRQ4 : 2F8 / IRQ3	ESC: Quit F1: Help F5: Old Values F7: Load Setup Defaults	 Select Item PU/PD/+/-:Modify (Shift) F2: Color

IDE HDD Block Mode: The Default setting is "Enabled". This feature enhances hard disk performance by making multi-sector transfers instead of one sector per transfer. Most IDE drives, except very early design, have the Block Mode transfer feature.

IDE Primary Master PIO, IDE Primary Slave PIO, IDE Secondary Master PIO, IDE Secondary Slave PIO: There are six options "Auto", "Mode 0", "Mode 1", "Mode 2", "Mode 3" and "Mode 4". The default setting is "Auto". When set to "Auto" the BIOS will automatically set the mode to match the transfer rate of hard disk. If the system won't boot up when set to "Auto", set it manually to the lower mode. (e.g. From Mode 3 to Mode 2). All IDE drives should work with PIO mode 0.

IDE Primary Master UDMA, IDE Primary Slave UDMA, IDE Secondary Master UDMA, IDE Secondary Slave UDMA: The options are "Auto" (default) and "Disabled". When set to "Auto" the BIOS will automatically load Ultra DMA 33 driver to match the transfer rate of IDE hard disk drive which supports Ultra DMA 33 mode. The default setting is "Auto".

On-Chip Primary/Secondary PCI IDE: The default setting is "Enabled". This option enables the onboard Primary / Secondary PCI IDE controller.

USB Keyboard Support: Set this option to "Enabled" if an Universal Serial Bus (USB) keyboard is used in your system. The default setting is "Disabled".

Onboard FDC Controller: The default setting is "Enabled". This option enables the onboard FDD controller.

Onboard Serial Port 1 and Onboard Serial Port 2: These options are used to assign the I/O addresses for the two onboard serial ports. They can be assigned as follows:

3F8/ IRQ4 (Serial Port 1 default) 2F8/ IRQ3 (Serial Port 2 default) 3E8/ IRQ4 2E8/ IRQ3 Auto Disabled (Disable the onboard serial port)

UART2 Mode: The options are "Standard" (default), "IrDA 1.0" "ASKIR" and "IrDA 1.1". When set to "Standard", the UART2 is used as serial port 2. Two IR implementations are supported, IrDA1.0/IrDA1.1 and ASKIR. IrDA 1.1(Fast IR) allows serial communication at baud rates up to 4 Mbps. The Amplitude Shift Keyed IR(ASKIR) allows serial communication at baud rates up to 19.2K Baud.The IR mode setting depending on which type of infrared module is used in the system. The default setting is "Standard" **Duplex Select:** The options are "Full" (default) and "Half". Full duplex mode permits simultaneous two-way transmission. Half duplex mode permits transmission in one direction only at a time.

TxD, RxD Active: The options are "Hi, Hi" (default), "Hi, Lo", "Lo, Hi" and "Lo, Lo". This option is used to set the active level for TxD and RxD. The default setting is "Hi, Hi".

IRRX Mode Select: When the option "UART2 Mode" set to "IrDA1.1(Fast IR)". Two types of transceiver modules: IRMODE and IRRX3 can be selected. The default setting is "IRMODE".

Onboard Parallel Port: This option is used to assign the I/O address for the onboard parallel port. The options are "378/IRQ7" (defaults), "278/IRQ7", "3BC/IRQ7" and "Disabled" (disable the onboard parallel port). Note: Printer port always use IRQ7 when set "378/IRQ7" or "278/IRQ7" or "3BC/IRQ7" to "Enabled".

Parallel Port Mode: There are seven options "Normal" (default), "SPP", "EPP1.9+SPP", "ECP", "EPP1.9+ECP", "EPP1.7+SPP", "EPP1.7+ECP". Change the mode from "Normal" to the enhanced mode only if your peripheral device can support it.

ECP Mode Use DMA: When on-board parallel port set to ECP mode, the parallel port has option to use DMA "3"(default) or "1".

If you make any changes to the onboard FDD controller, serial ports or parallel port in this setup, save the change and turn off the system. After turning the system on again the change will be effective.

3.14 SUPERVISOR / USER PASSWORD

The "SUPERVISOR/USER PASSWORD" utility sets the password. The Mainboard is shipped with the password disabled. If you want to change the password, you must first enter the current password, then at the prompt enter your new password. The password is case sensitive and you can use up to 8 alphanumeric characters, press <Enter> after entering the password. At the next prompt, confirm the new password by typing it and pressing <Enter> again.

To disable the password, press the <Enter> key instead of entering a new password when the "Enter Password" dialog box appears. A message will appear confirming that the password is disabled.

If you have set both supervisor and user password, only the supervisor password allows you to enter the BIOS SETUP PRO-GRAM.

Note:

If you forget your password, the only way to solve this problem is to discharge the CMOS memory by turning power off and placing a shunt on the JP14 to short pin 2 and pin 3 for 5 seconds, then putting the shunt back to pin1 and pin2 of JP14.

4 Driver and Utility

4.1 Flash Utility

The BIOS of the P6F82 mainboard can be upgraded by using a Flash utility. A new version of the BIOS can be downloaded from the factory's BBS and Web site. The system BIOS is stored in a 1M-bit Flash EEPROM which can be erased and reprogrammed by the Flash utility.

There are two files in the FLASH directory.

FLASH.EXE	The Flash utility for AWARD BIOS upgrade
README.TXT	A text file of instructions

The Flash utility will not work with any memory manager software running in the system. In order to make sure no memory manager software is running, boot your system from a bootable floppy disk which does not contain CONFIG.SYS and AUTOEXEC.BAT files. If you are using MS-DOS 6.x, you can press <F5> function key while the "Starting MS-DOS..." appearing on the screen to bypass the CONFIG.SYS and AUTOEXEC.BAT.

4.2 EIDE Bus Master Driver

The Bus Master EIDE logic designed in the Intel 82440LX chipset is intended to reduce the workload of the CPU and make the CPU running more efficiently. It will take care the data transfer between IDE drives and system memory and let CPU handle other tasks. The driver must be loaded in order to make the EIDE drive operating at bus-mastering DMA or Ultra DMA33 mode. There are three self-extracting archive files in the BMIDE directory.

BMIDE_95.EXE	For Windows 95
BMIDE_NT.EXE	For Windows NT
BMIDEOS2.EXE	For OS/2

Execute the BMIDE_95.EXE to extract files for driver and installation instructions for Windows 95. Execute the BMIDE_NT.EXE to extract files for driver and installation instructions for Windows NT. Execute the BMIDEOS2.EXE to extract files for driver and installation instructions for OS/2.

Online Services

Freetech is a leading designer and manufacturer of high performance system boards for desktop PCs, workstations and network servers. Since its inception in the heart of Silicon Valley in 1990, it has continued to provide valued products to its customers by focusing on service, quality and technology.

If you need technical support, information on products, and updated version of BIOS, driver and utility, access the Internet and go to:

http://www.freetech.com/